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A R E F I N E D  S T A T E M E N T  OF D Y N A M I C  P R O B L E M S  

OF S A N D W I C H  SHELLS W I T H  T R A N S V E R S E L Y  S O F T  C O R E  

A N D  A N U M E R I C A L - A N A L Y T I C A L  M E T H O D  

OF T H E I R  S O L U T I O N  

V.  A.  Ivanov  and V.  N.  P a i m u s h i n  UDC 539.3 

1. I n t r o d u c t i o n .  In analyzing the strength of sandwich shells with transversely soft core, one often 
encounters the problem of determining both the lower modes of free vibrations, which are described with 
sufficient accuracy by approximate models neglecting transverse deformation of the middle layer, and the 
higher modes of vibrations, accompanied by thick wave undulation at the facings and transverse deformation 
of the core. To describe the latter modes, it is necessary, as a rule, to use refined relations of the sandwich 
shell theory, taking into account the transverse deformation of the core. 

Of the known variants of such relations, the simplest ones are based on a linear approximation of 
displacements in the middle layer within the framework of the transversely soft core model; they have been 
studied in detail in many papers (for example, in [1]). However, the accuracy of these relations appears to be 
insufficient for a relatively small value of the parameter r characterizing the ratio of facing thickness to core 
thickness and for investigating the free vibrations of sandwich structures preloaded with static forces producing 
a bending initial stress-strain state (SSS). This conclusion follows from analysis of the papers dealing with 
the stability of sandwich shells with transversely soft core under a bending SSS. Refined equations for the 
statement of such problems have been derived in [2]. 

It should be noted that for small values of the parameter r and with loss of stability accompanied by 
thick undulation of waves, and also when the high-frequency modes of vibrations are realized, the solution of 
the corresponding problems by numerical methods encounters serious difficulties since fine grids are necessary 
for approximation. Therefore, elaboration of mixed methods of their solution, based on analytical methods 
coupled with numerical ones, is expedient. 

In this connection, we propose here a generalization of the relations derived in [3] for describing 
of dynamic processes in sandwich shells having transversely soft cores. We also take into account finite 
displacements of the facings in a quadratic approximation. Linearization of these relations in the neighborhood 
of a certain bending initial SSS is used to obtain refined equations to determine the dynamic characteristics 
of structures ui,der initial static loading. By introducing simplifying assumptions which do not allow loss 
of the number of determining parameters, these relations are reduced to a lesser number of equations in 
determining eigenfrequencies, which are exact for plates and shallow shells and asymptotically exact for the 
higher vibration modes of nonshallow shells. An approximate analytical solution to these equations is found, 
which permits a mixed numerical-analytical algorithm for determining dynamic characteristics to be realized. 

2. D i s p l a c e m e n t s  and  S t ra ins  of  a Sandwich  Shell. To derive the equations of motion of sandwich 
shells of general form, we will use the basic relations and notation of [2]. In terms of the model of [2] for 
describing deformation processes in the layers, the Kirchhoff-Love hypotheses are used, on the basis of which 
the displacements of the kth layer for the moderate bending of the midsurface cr(k ) are determined by the 
known formulas 

= _ = ( 2 . 1 )  
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where u! k) and w (k) are the tangential displacements and deflections of the midsurfaces a(k), and to!k) are the 
angles of rotation of the elements normal to a(k), calculated by the formulas 

to!k)= Viw (k) + ~u~ k). 

For the components of the tangential strain tensor in terms of (2.1), the following formulas are valid 
for moderate bending: 

ez(k) _(k) 2.(t0 = .(to) .(k) to(k), (k) iS = r + Z(k)W'! k), r ':'ij + 'zji + i ~"j , 

e(k) _ . (k) = _Vitojk) _ Vjto!k) ij = Vit t~ k) bij w(k), zzeij 

(k) and _(k) Qi "=ii are the covariant components of the tensors of tangential strains and of a(k) surface curvature 
changes). 

To describe the SSS of the low-stiffness middle layer, we will use the refined model of a transversely 
soft core [3]. It can be shown that  in terms of this model and using the estimates established in [3] for dynamic 
processes characterized by frequencies to satisfying the condition 

to2 << G I ( p H  2) (2.2) 

(G and p are the characteristic transverse shear modulus and the density of the core, respectively, and H is 
the thickness of the sandwich shell), the SSS of the core is described with the adopted degree of accuracy by 
the equilibrium equations given in [3]. Then, for the components of the vector of displacements of the middle 
layer, we have 

Ui = ui + zdisq s - z 2h 4h (to!2) _ to!l)) + - hz  ViVsqS2E------~ + + hz  ~i#32_____~ -- VIA3, 

W (1) + W (2) W (2) - -  W (1) Z 2 -- h 2 - z + h 
U3 = + z - -  Viq' -- ~ 83 + A3. 

2 2h 2E3 2h 

The displacements ui and the deflection w of the points of the core midsurface a appearing in these 
formulas can be expressed in terms of displacements of the layer midsurface points and transverse shear 
stresses qi: 

it! I) ~- U! 2) (2~(1) -~ h)to} I) -- (2t(2) ~- h)to} 2) 
ui -- + 0/ ,  

2 4 
w (1) -l- w (2) h 2 

w - 2 + ~ 3  Viqi + fl' 

following from the kinematic conditions of the layer coupling. 
3. T h e  E q u a t i o n s  o f  M o t i o n .  B o u n d a r y  a n d  In i t i a l  C o n d i t i o n s .  To obtain equations of sandwich 

shell motion, we use the Ostrogradskii-Hamilton variational principle 

tx 

=/(6T-6I)dt. (3.1) 6L 

t~ 

Here, T is the kinetic energy of the system and I is the potential energy whose variation is determined in [3]. 
To evaluate the variation of the kinetic energy of a sandwich shell, we will neglect, in accordance 

with [1], the rotary inertia of the normal elements of the layers with respect to their midsurfaces and also 
the inertia associated with shear deformation and transverse deformation of the core in comparison with the 
inertia associated with the midsurface displacements. Then, 

i [ (Oi i l  2 [t~'U,2'~ 2 (OW'~ 2] 1 2 r 'ou <k,'2 i'Oqu~k)'h 2 (~qw(k)'~ 2] 
+ (3.2) 

= <'(k) 
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where m(k) and m3 are the masses of the facings and core, respectively, per unit areas of the corresponding 
midsurfaces ~r(k) and #, and t is the time. 

According to the Ostrogradskii-Hamilton principle, the variations of the displacements and the angles 
of rotation of individual layers of the shell vanish for t = t~ and t = t f  when the states of motion are compared 
for the fixed values of t~ and tf. As a result, after the traditional transformations and simplifications mentioned 
above for the variation of the kinetic energy (3.2), we obtain the expression 

f 5T dt-- - (Qi,,~u!" + Q~/~>gw <k,) m3h2Vilz' ~qi]da 
3E3 

4 (2t(k) + h)fiiniS(k)Sw (k) ~w3niSq ]ds dt, (3.3) 

where 
m s ( .  2t(k) + h ) m3fii Q~k) = re(k) ~O(k) + ~ w3 + ~(k)Vi~z i 

QI~) = m(~>~?) + T '  2 ' 
(3.4) 

~,(1)  .4_ z})(2) ~-- (--1)/r (k 1, 2), 
zb3 = 2 + ~' 5(k) = 

and the dot at the function the denotes derivative with respect to time. 
Using the variation of the potential energy 6I given in [2] and the variation of the kinetic energy (3.3) 

just obtained, we write the variation of the integral (3.1) in the form 

ts \ k = l  e k = l  

ds S~k)ni + ~ + 2t(k)4+___~hrn3fiiniS(k) 5w(k) 

/2h3 i 4rn3 h2- "~ s ] ] ,  

rn3h2ViCva ~ 6qi] } do'>dt. (3.5) 

Qualitative analysis of Eq. (3.5) shows that, in accordance with restriction (2.2) imposed on the dynamic 
behavior of the structure, the terms containing the factor rn3 in explicit form are small compared with the 
other terms and are ignored in the following investigations. 

By virtue of the arbitrariness of the variations ,~u! k), 6w (k), 5q i and adopted assumptions (2.2), a system 
of eight differential equations of motion follows from (3.5), which can be written in the notation of [2] as 

: - + + : o , i , , ,  

i1 E36<}) (w(2) _ w(X) _ f ls)  = O~k), (3.6)  :~,) = v , s ~ , ,  + ri,)b,~ + x~,) + - - ~  

2hS ViVsq s + V i m T  = O. . ,  = =P) - =P) - (tin + h ) ~ } '  - (tl~) + h)~}  ~) + 2hd~q" - 3E~ 

Here, 

S~k) . ij ~ij (k) �9 = V,MIk ) + ~t~)~, + M~k) + (ttk) + h)qJ, 
h 

rat = f c~sTz dz. 
-h  

(a.;) 

For the specified forces ~ ) ,  (I)~r), and ~ )  and moments L(kr ) and L (k) applied to the boundary sections 
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c(k) of the midsurfaces of the facings, various combinations of boundary conditions can be formulated on the 
basis of expressions appearing in the contour integral of the variational equation (3.5): 

T. : if 6u ) r 0, 
T(~ ) = +(•), if 8u?  ) ~ 0, 

(3.8) 
S~k)ni dG~) = ~ )  dL~) if 5w 0') r 0, 

ds ds ' 
G~ ) = L (k), if 8w (l') # O, 

q'ni = 0, if there are no external forces applied at the contour of the core or Vsq s = 0, if the boundary section 
of the core is fixed. 

Moreover, the following static conditions should be satisfied at the corner points of the facings: 

C ~  = L(2 ) ,  if 6w (k) # 0. (3.9) 

To integrate the equations of motion (3.6), in addition to kinematic and static conditions (3.8) and 
(3.9), we have to specify the initial conditions at t = 0: 

u !k )=v!  k), w(k)=v~ I'), ~!k)=a!k),  ,b(k)=a~ l'), (3.10) 

where v! k), v3 (k), a! k), and a~ k) are the specified displacements and velocities of the facings. 
The system of differential equations (3.6) and kinematic relations (3.8)-(3.10) are to be complemented 

by physical relations for the facings. If they are subjected to thermal loading, the relations for the case of 
linear-elastic deformation assume the form 

t Ti,~) = ~O~%(k) i i  i i  = nii~(k) ii  ~(~) ~ -  Tik ), Mik ) ~'(~) ~s ,  - M(k), 

D i j s n  o12iJ sn n i J  sn = o l~ijs n +3 / q  l~ijsn is  the four-valent tensor of the elastic constants of the where ~(k) = "~(k) t(k), ~(k) "~(k) ~ o, ~(k) 
t . .  t ij material, and T~) and M(k ) are the two-valent tensors of internal temperature forces and moments. 

4. L inea r i zed  E q u a t i o n s  of Mot ion  for Shells of G e n e r a l  F o r m  u n d e r  In i t i a l  S ta t ic  Loading.  
In practice, as a rule, three-layer elements of a structure experience certain dynamic loading after they are 
subjected to static loads. Therefore, one of the stages of their strength analysis consists in determining the 
dynamic characteristics (frequencies and modes of vibrations), which can be studied on the basis of linearized 

. (~)  , ~(~)  
equations of motion. To derive such equations, we assume the total displacements u i an(~ and stresses q' 
to consist of the static displacements u!})and w (~) and stresses qi describing the transition of a shell from the 
undeformed state to undisturbed, static, deformed state, and infinitesimal additional dynamic displacements 
o(~) ~(k) 
u i and and stresses ~' determining the transition to the disturbed state. Moreover, the specified forces 
X~k) ' X~k) ' (I)~), r and ~ ) ,  the moments M~//,), G(~ k), and G~ ), and the temperature distributions in 
the layers T (k) and T are assumed to be independent of time. Then, linearizing the basic equations in the 
neighborhood of the static deformed state, we obtain a system of linearized equations of motion: 

�9 o j o3 oi  o i j  E 3  o ( 2 ) _ ~ ( 1 ) )  03  oj =Q(k), =ViS(k)+T(k) O(k), f(k) = V i  T(k) -- S(k) 6(k) f (k) bij q" = 

o ~(1) ~(2) ~ 2h3 V i V ~ "  = 0 .  #i = ~i -- ~i --(t(1) + h) ~!1) -(t(2) + h) ~!2) +2hdis q 3Ea 
(4.1) 

Here, 

o,j 
T(k) = ~(k)  ~%n + w~k))/2, M(k) = ---(k) ~--s n 

oj o ij oij (k) ij 2(k) h) oi 
S(k) = Vi  M(}) + T(k) wi + Tik ) wi +(t(k) q'- q ,  

(4.2) 
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oi  0 3  
while Q(k) and Q(k) are defined by relations (3.4), where 

o [ o(2) h) ~!x) h) ~(2)] (~2~3 02 ~)(1) jr_ ~3( 2 ) 692 Ui 02 ~!1) A-u i (2t(1) + --(2t(2) + ' �9 (4.3) 
at 2 - -  - ~  2 4 ' Ot ---5- = Ot 2 2 

The boundary conditions corresponding to derived equations (4.1)-(4.3) have the same form as 
conditions (3.8) and (3.9), provided 

As before, initial conditions are written in the form of (3.10). 
5. S impl i f i ed  L i n e a r i z e d  E q u a t i o n s  of M o t i o n .  We assume that  during vibrations of a shell the 

deflections of the facings w (k) prevail and the following estimates are valid: 

0 1 
Vi "~ 

O z i  ~ -f ' 

where )t is the characteristic wavelength. 
When )~ .-- H,  it can be established that the relation below is valid 

,~(k) ~ Vj ~(k), 
o i  

which is known in the shallow shell theory. Moreover, the terms S(k)~ can be omit ted in Eqs. (4.1). As a 
result, they take the form 

oj o i j  oj - o j 
f(k) = Vi T(k) + q(k) ~(k) = Q(k), (5.1) 

while the other equations of the system (4.1) remain unchanged. 
Another limiting case is observed for vibrations accompanied by the appearance of long waves )~ ~ L, 

where L is the characteristic dimension of a shell. Moreover, the transverse shear stresses ~' in the core have 
a small variability'characteristic, which enables us to establish the estimate 

ViVs q" "~ q ' /L  2. (5.2) 

Since h(k)/L << 1 for such shells, the terms (5.2) can be neglected in the last equation of system (4.1), which 

makes it possible to solve it for ~': 

ASi[~!2  ) _ ~ ! 1 )  .4_(t(1).3ff h ) ~ !  1) _~_(t(2 ) + h)~2! 2) ] 
(5.3) 

2h 
oi o i 03 o 3 

In the case under consideration, the form of the equations f(k) = Q(k) and f(k) = Q(/,) remains 

unaltered, but the unknowns ~' appearing there can be eliminated with the help of relations (5.3) and expressed 

in terms of the unknowns ~t! I') and ~!k). 
The extremely simplified linearized equations of motion are obtained from system (5.1) with relations 

(4.2) in which the "deformation" parametric terms are omitted, i.e., when ,,q'~ = 0. Then, 

oj olj o~ o i 
f(k) = V~T(k)+q" ~(k) = Q(k), 

03 o ij oij :: �9 .. .j . .~(k).XT.,,,(t)xT.~olJ q . . . •  ~)(1)~__ 03 f(k)=ViVjM(k)§ ---,~ --j~(k)-t (~}T j ,~ ---~t - J-Q(t), 

o, 2h s o, 
~ ~ (1) ~,!2)-(tr + h)V~ w~'~-(t~2~ + h)V~ &(%2hdis  q -3-~3 V~V, q = O, Izi = u i -- 

(5.4) 
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where V 2 is the Laplacian operator for general coordinates and 

oj 02{ o ( k ) . m 3 [ o ( 1 )  o(2) ,-. (2t(D+h)~vO)-(2t(2)+h)~v(2)]} 
Q(k)=-#i ~ m(~),~j +--C[~,j . u j  - ~ j  2 . , 

o 3 02 / ~ (k) 7/13 { ~)(1) ~3(2) 
Q(k) = ~i~\m(k)~ + T _  + +(2t(k) + h) (5.5) 

_IV ~ ~,!1)+2 ~!~) V 2 (2t(,) + h)~,(')-(2t m 4  + h)~(~)~] ~(k)~).~\ X 

6. E q u a t i o n s  for t h e  Inves t iga t ion  o f  F l exura l  V ib ra t i ons  of  Shal low Shells.  These equations 
can be obtained from (5.4) and (5.5) with fi}k) = 0. Here, the inertia terms Q{k) and Q~k) take the form 

Q~k) = Q j m3 [ ] 
= -~- (2t(2) + h)Vjfffl 2) - (2t0) + h )Vj~  (D , (6.1) 

(k) = rn(k) ~(k) + ~0)  + t~(2) + (2t(k) + h)V 2 (2t(2i + h)t? (2) - (2to) + h)t~O) 8(k) �9 
4 

From now on the superscript o on the function is omitted and then introduced to denote the characteristics 
of the SSS which refer to static deformation. 

Considering shallow shells, we identify, in what follows, curvilinear coordinates x 1 and x 2 with Cartesian 
orthogonal coordinates z and y, which enables us to set the coefficients of the first quadratic form of the 
surface ~ equal to unity. Moreover, the components of the second metric tensor have the form bll = -1 /Rx ,  
b12 = 0, and b22 = -1 /R2 ,  provided the x and y directions coincide with the directions of principal 
curvatures. In the given coordinate system the following relations are valid (R1 and R2 are the radii of 
principal curvatures): 

Ti,~) = Bi j sn  (k) ij I-)ijsn ~(k). (k) ~s, ,  Mik ) = -~(~)  "~s,, (6.2) 

cgu~ k) w (k) ~k 

~'11 = 0x + R--'~' ~12 = Oy ~ x  ' ~22 Oy + R2 
~v(k ) 02w(k) ze(k ) 02w(k) 02w(k) (6.3) 

11 - ~ , 12 = 0"0~y'  ze22 = 0y 2 �9 

Let us assume that the principal directions of anisotropy in the facings of the shell are orthogona.l 
ss but do not coincide with the x and y directions. Then, it is more convenient to introduce the constants c(k ) 

~ijs,~ by the formulas defined in [4] instead of the elastic constants ~(k) 

B l l l l  11 D1221 Dl121 13 D2211 Dl122 12 (k) = c(k), ~(k) =--(k) =c(k), ~(k) =~'(k) = c(k), 

B1221 33 I:~1222 I~2221 23 /:~2222 22 (6.4) 
(k) =c(k), ~(k) =~(k) =Cck ), --(k) =c(k)- 

For a transversely soft core in the chosen coordinate system, the elastic constants are defined by the 
formulas A 11 = Gll,  A 12 = G12, and A 22 = G22, where Gij can be expressed in terms of the transverse shear 
modulus G13 and G33 of the core. Moreover, 

G22 G12 Gll 
d l l =  "~'-s ' d12 = d21 = W '  d22 = W '  a s  = G11G22 - 622.  (6.5) 

Use of relations (6.1)-(6.5) enables the system of equations (5.4) to be transformed to a system of 

eight differential equations for unknowns u! k), w (k), and qi which can be reduced to two resolvent equations 
for the deflections of the facings. To this end, we will substitute the forces and moments (6.2), together with 
(6.3)-(6.5), into Eqs. (5.4) and (6.1). Moreover, in all the following calculations we will assume that the values 
of the elastic and rigidity parameters, as well as the curvatures, are constant. After transformations consisting 
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in solving Eqs. (5.4) for tangential displacements u! ~), as was done in [5], this system for each of the facings 
becomes 

V4 . (k) = _V2(k)pi l)  + Vxy(k) "~k , Vz(k) t~2 _V2y(k)p(2) .~_ Vxy(k) "~k , z(k)~l k'72 D(2) V74 . (k) = X-72 D(1) 

t~k) 4 (k) 4 = V, (~ ) (Z(a )  3 Vz(~)L(~)w + V~)w(k) _ p~3)), (6.6) 

where the following notation is introduced: 

for the operators 

0 2 32 02 2 33 23 22 2 13 02 02 02 23 

2 11 13 33 
V,(k) = c(k) ~ + 2c(k) ~ + c(k) ~-~y2, V~k) = a(k) + R1R-----20x20y ' '-----~ + ' 

04 04 ~4 04 04 23 22 4 22 23 12 33 _ _  + + 
Vz(k) = a(k) ~ x  4 -- 2a(k) 0x-~0y + (2a(k) + 2a(k)) Ox20y 2 4a(k) Ox Oy a a(k) Oy 4' 

0 4 04 0 4 04 0 4 11 13 12 33 23 22 
L(k) = c(k) ~ + 4c(k ) ~ + 2(c(k ) + 2c(k)) Oz20y 2 + 4qk ) Oz Oy 3 + CCk) Oy 4; 

ij which are the cofactors of the determinant Ici~)l for the elastic constants a(k ) 

ii 
a(k) = [c(k)l; 

for the parametric term 

(6.7) 

~% = Qik) - q%) ,  

ou O2w (k) o12 O2w (k) 022 c92w (k) 
Z(k) = T(k) 3z---- T- + 2 T(k) Ox O-~ + T(k) Oy------T-; (6.8) 

P(3k) = 2~ (w(2) - W(1))(~(k) + (t(k) + h )V iq i - -Q~k ) .  (6.9) 

In deriving Eqs. (6.6), the terms containing the shell curvature as a factor were omitted by virtue of 
the shallowness of a shell. 

Proceeding to further transformations, we express qi in terms of the displacements of a shell. From 
Eqs. (5.4) (#i = 0), we find 

--2 1 ( G l l  h2V" 02 (G12 + h2Gs 0 2 Ow 

(6.1o) 

Here, 

U~ 1 ) -  U 7) Ul 1) -- 7all 2) (t(1) + h)w (1) + (t(2) + h)w (2) 
U ~  U ~  W ~  

2h ' 2h ' 2h ' 
h2 V2, 2 02 02 02 (6.11) 

v :  = 1 - ~ . v;  = Gll ~ + 2c12 ~ + G22 0v2" 

Substituting Eqs. (6.9)-(6.11) into (6.6) and performing certain transformations, we pass from the 
system of eight differential equations to a system of four differential equations written for four functions u, v, 
and w (k) introduced above: 

4 , , 4 [ 0o)1 
2hV~ Vz(1)Vz(2)u = (Vx(1)Vz(2) + Vx(2)Vz(1)) Gl l  u -}- ~ + + V12 v -}- ~ 3 E 3 0 y  ~V -~z 
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h:G, 0 (Ou Ov 
2 4 V2 4 (v ~ -~ )+  3E3 --(~xy,l,~z,2) + xy(2,~z(1,)[G12(It+~) +G22 + - - ' ~ \ ~ y  -~'~)] 

2 4 2 4 --2 1 2 4 2 4 ~2 2 + (Vz(,)Vz(2) - (6.12) -- -- (Vxy(1)Vz(2) v~(2)vz(1))vj Q v~y(2)vz(,))vj Q, 
--2 4 4 2 4 2 4 h2Gs 0 (Ou Or)] .= (Vy(1)Vz(2) + ~ )  _1_ +e22(v 0 w ) + - -  2hVs Vz(1)Vz(2)v VY(2)Vz(1)) [G12 ( u+ + ~ y  3E3 ~--xx \~y ~x 

2 4 _ ~2 ~4 ~W2rtl 2 4 2 4 =2 2 -- (~xy(1)Vz(2) zy(2) z(1)! vs ~d + (Vy(1)Vz(2) -- Vy(2)Vz(1))Vs Q ; 

523 sV.(,)L(k) w +VjV(k)w _VjVz(k)[Z(, ) Es. (2) (k)~? 4 (k) =2 4 (I~) =2 4 +~-~(W --W(1))--Q~k)]= 

4 2 0 0 =(t(k)+h)V.(,)[Vs w+ (G11-~x+G12~y)U+ (G22 ~---~+G12~x)v ]. (6.13) 

Expressing u and v in the system of equations (6.12) in terms of w and substituting them into Eqs. 
(6.13), we arrive at a system of two resolvent equations for the investigation of flexural vibrations of a sandwich 
shell, which axe written for deflections of the facings: 

( ~ _  V(% ~w(k ) Es(wO) _ L(k) + w--T-- + - w(2))~(k) Z(k) - (~(k) + h)P~w 
V~(k) ] 2h" 

+ m(k)~(k) + _~{~(1) .4_ ~)(2)- (2t(k) + h)5(')V2 [ (250) + 4 h)w(1) - (25(2)-~ h)55(2)] 

(25(2) + h)tb (2) - (250) + h)tS(D } + (t(k)+h)P~ =o. (6.14) 
J 

Here, formal notations are introduced to denote the operators 

V~ - GsL. ( . ) '  "Ps --V: - G11Lx + 2G12L~ v - G22L~ + Gs LxLy - LZxv + ~ Lz 

(~-GsLz)Pw = Ps { [(GII-GsLy) ~--~+ (Gl2-GsLxy) ~--~] (O-iz O-ixy~ 

\ o .  J j' 
where 

2 L p :  2~ (v~(1)2 V2(2)'~ 5z 1 ( 5(1 , 5(2 ) ~, 
V~(2)'~ \V4z(n__ 4 , -- ~-~\V4--~O) + ~ .  p - - x ,  xy, y. (6.16) 

Lp = 2h kV%) + v4,(2)J ' Vz(2)J Vz(2)] 

Operators (6.15) and (6.16) are operators with constant coefficients containing only even derivatives 
with respect to the coordinates x and y. Therefore, we will use the following property: 

oi+J = (-- x )(i+j)/2 cti ~ j, (6.17) 
Ox i OyJ 

where the sum i + j is an even quantity and a and fl are parameters characterizing the variability of the 
functions along the coordinate lines. 

We point out that the equations derived here are exact for investigating bending modes of vibrations 
of plates and shallow shells with constant curvatures and asymptotically exact for the analysis of the higher 
modes of flexural vibrations of nonshallow shells. 
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7. A n  A p p r o x i m a t e  S o l u t i o n  to  t h e  P r o b l e m  of N a t u r a l  F l e x u r a l  V i b r a t i o n s  of  Shal low 
Shel ls  P r e l o a d e d  by S ta t i c  Forces .  Exact analytical solutions to Eqs. (6.14) are unknown for the general 
case. Assuming that the eigenfrequencies of vibrations w depend upon boundary conditions insignificantly, we 
restrict ourselves to an approximate description of the modes of vibrations in the form 

wOO = W'(k)ran cos + exp ( - iw t )  (7.1) 

for plates and panels or in the form 

w (k) = W~n ) cos [m(O -- 00) + n/3] exp ( - iw t )  (7.2) 

for shells of revolution closed in the circumferential direction/3. Here, W ~  ) is the amplitude of deflection of 
the kth facing, m and n are the numbers of halfwaves of vibrations in the directions of x and y for plates and 
panels or in the directions 0 and/3 for shells of revolution, a and b are dimensions of a plate or a panel, and 
00 is the cut angle of the shell of revolution. 

We note that  functions (7.1) and (7.2) satisfy condition (6.17) and are exact solutions to Eqs. (6.14), 
oij  

provided the forces corresponding to the initial stress state T(k) and appearing in the expression for the 
oi1 

parametric term Z(k) are constant. Otherwise (T(k) # c o n s t ) ,  Eqs. (6.14) can be integrated by the Bubnov- 
Galerkin method. After certain transformations we write the result of the integration as 

2 - -  w 2M(1) IV.(1) + ( P m n  - w2M (-)IV.(2) = 0, (~(1)ran m r = ,  mr= r a n /  r a n  

(7.3) 
2 - w 2 M  (2) ~W. (2) - -  0 ,  ( P m n  - t~ / rnn + (~-~(2)mn m n /  m n  

where notations resulting from the following operations are introduced: 
(1) Transformation of the corresponding differential operators (6.7), (6.11), (6.15), and (6.16) appearing 

in Eqs. (6.14) into the algebraic ones: 

L(k) 11 4 4c~3)mSnA 12 33 2 2 2 +4c~3)mnaA3 22 4,4 ran = C(k )m + + 2(C(k ) + 2c(k))m n A + c(})n a , 

A ~  ) 22 4 23 3 12 33, 2 2-2 13 3 3 11 4 4 = a(k)m 2a(k)rn n~ + (2a(k) + a(k))m n a - - 2a(k)mn A +a(k)n A , 

2 33 2 + 2c~,)mn)~ + , . ( k ) , o  , ,  r(i) = ~ ( - - 1 )  k(1-/) c(k) m ,,22 ,,2~_2 
A S h  = m 2 + 2glsmnA + g2,n2A 2, "~lmn k=l K(k)A~ ) ' 

2 .11 ~2 + 2c~2)mnA + ~(k) . . . .  r(i) = E ( - 1 )  k(1-i) t '(k)"'  ,.33 ..2•2 

=2~.  k : l  K(k)A~ ) ' 

~23 _2x2 2 . c13 _ 2  + (c(12) + c~))mn)~ + ~(k)'" ^ 2 L(k) 
r ( i )  m n  
-3ran = Y~(-1)  k(1-') (k)"" K(k) A ~ )  , Z~nn = ~ (k)' 

k=l k=l K(k)Amn 

4r~l ) s s Ainu + gsLmn ~ s  = 1  + s , - -  &mr*, P,~ , ,  = ~o(1)K(I ) ~ s  (1) (1) (1) s . t r 0 )  r(1)  r(1) 2 ~' mn + L l m n -  2glsL3mn + g2sL2mu + aesLmn + $sk aJXran~2rnn-- ~3rnn ) 

PSm={t(gsLil)m. 1 ) m - -  L (1) n "l:r(2) -- (2) (A~n. + gsL~na)P~. = + 1 -  Yl$ 3rnn "JkJJlmn"" - -  LsmnnA) 

(1) , L 0) (2) 

Pmn E3 [ 3P'mar0) (1 + 2r0))(1 + 2r(2)) - 1], 
= ~ [Ko)~o(1)r(2) 

f/~m. - D(})'4 [L(}) (rn2 + 6n2A2)2 ~(}) + i(}) 3Pr~n(I + 2r(})) 2 ] 
- ~ L - m  + .2 ^(k)  + T ""  + 2"K~g 1' ".(lO~,nn 
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) = r (k) + 1 + ( 1  + [(1 + + (1 + , 

Mk+) = m34 { 1 - (1 + r(2)) t(1}t(2)~'2 [ ( l a 2  "~ r(1)l.~2n -[-(1 "4- 2r(1)lPm~al}, 

{ ~(1)t(2)~r2 [(1 -}- r (2))A2m.-  (1 q- 2r(2))PmW.]}; M(_ ) = m34 i -- (1 "4- r(1)) a2 

(2) Nondimensionalization of the geometrical parameters of the structure in accordance with the 
formulas 

R2 h 
A ~, 8 R1 ' r(k) 2t(k) 

(3) Nondimensionalization of the physical and physical-geometrical parameters of the structure 
~4 D2~2 C~k) __ '* a~2n(k) E3a 4 B(k)~r2h Gis 4gsr~l) 
3 a 4 a ( k  ) , c2(k) = D(k)~r4h, K ( k )  = a2G11 , g i s  : ~ 1 1 '  Zes = ~o(1)K(1 ) - ,  g s  : g2s  - g l s ,  

where B(k) is the effective extensional rigidity of the kth facing; 
(4) Integration of the parametric term Z(~) from (6.8) in dimensionless form: 

l(k) 11 2 2p~2)rnnA + 22 n2A2 (7.4) 
m. = # ( } ) m  + #C~) �9 

Here, 

for plates and panels and 

a b 

#(k) -- D(k)Tr 2 T(k) cos 2 + dx dy 
0 0 

^ O0 7r . 

ij 2R~ f [ 2~i~)cos2[m(0 00) nl3ldOdfl 

for shells of revolution. 
o i j  

It should be noted that when T(k) ~ const, it follows from (7.5) and (7.6) that 

(7.5) 

(7.6) 

olj a2 
ii T(k) for plates and panels, kt(k)- D(k)~r 2 

ol./ 
ii T(k) R~ for shells of revolution. 

/tCk) - Dck) 

Using the condition of a nontrivial solution to system (7.3), we arrive at a quadratic equation for" 
determining w 2 (frequencies of free vibrations), the roots of which have the form 

wa2,2 = Am. 4- CA2m. - Bra., (7.7) 

where  

_ M ( - ) ~  n2 ~(I) pra,(M(m +) + Ara. = 1_ ~l)ra.M(m 2) + ,o(2)m..,.rn, ra, , ,  
2 )tar(l) l,f(2) aAr(+) ~Ar(--) 

ar162 ~ gratTnn ~r 

2 2 n~(+) ~'(-) 
Bran = ~ ( 1 ) r a n ~ ( 2 ) m "  - -  s ,amrt ~,~rnrt 

Mm(1) a/t(2) ~Ar(+) ~Ar(--) 
~ r ~ t ~ n  -- ~ r J t r a n  ~ r ~ t m n  
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When the shear stresses qi vary slowly along the coordinates, which occurs during vibrations with long 
waves A ,,~ L [1], one should take ~es = 0 and ~ ,  = 1 in order to calculate w~, 2. 

When only cophased modes of natural vibrations [i] characterized by T'~/'(1),,ran = w(2),,ran = Wren are realized 
in the structure, their frequencies are calculated by the formula 

2 2 
w2 = U(1)m, + i'~(~)mn 

i r a n  

which is obtained from (7.7) as qo(1,) ~ co. Here, 

~-2 D(1)~r 4 [L(m 1) + 
12(1)m ~ - a4 

-~-2 D(2)Tr 4 [L~) + 
fl(2)ran -- a4 

(m 2 + ~Sn2A2) 2 

C2 A(1) (1) ~-arnn 

(m 2 + ~n2,~2) ~ 
C2 A(2) (2)~-aran 

+ I ~  ) + ~  1 +  +4r0)  , 
n ( 1 )  r(2) 

i +  +4r(,) , 
r(1) 

7r2a2m3 
M m n  = re(l)  + m(2) + m(3) + ~ (t(1) -- t(2)) [(t(1) -- t (2) )~2n "4- (t(1) + t(2) + 2h)P~n ]. 

The relations for w~, 2 (7.7) given above imply the following structural formula for determining 
eigenfrequencies of vibrations: 

a4m(1)w~,2 ( 1 m(2) m(3) ~2 '(k) A ij ) e(k), g(k), v(k), = f ~(k),~b, m(1)' m(1)'t'(k)'--~-' ,6, r(k),qo(k),K(k),gis,#(k); m, nA, O (7.8) 

Here, ~b(k) and ~b are the angles of reinforcement of the facings and the core, e(k), g(k), and v~k ) are the ratios of 
the modulus of elasticity to the shear modulus, and Poisson's ratios for the facings. The remaining parameters 
are given above. 

8. Algor i thms  of Mixed Numer ica l -Ana ly t ica l  Methods  for Solut ion of the  Problems.  The 
analytical solution given in Sec. 7 is exact for rectangular plates and shallow panels with hinged edges and 
is asymptotically exact for calculation of the frequencies of the higher modes of vibrations of nonshallow 
shells of revolution depending little upon boundary conditions. However, this statement is valid only in the 

o ij 
case where the forces T(k) corresponding to the initial static loading are determined exactly. The problem of 
determining such forces with the required degree of accuracy can be solved by one of the known numerical 
methods, which suggests a numerical-analytical algorithm for solving the general problem of investigating the 
dynamic characteristics of sandwich structures of the class considered. In accordance with this algorithm, the 

forces T~) are determined by numerical solution of equations describing the initial static equlibrium of the 
ij structures, while the coefficients #(k) appearing in (7.4) are calculated by (7.5) and (7.6). 

The derived formula (7.8) for determining eigenfrequencies can also be used as a structural formula 
in using the mixed analytical-computational-experimental approach proposed in [6], which requires the 
identification of the parameters m, n, and 0 appearing in (7.8) which are not identified in the framework 
of this approach. 
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